A Parallel Implementation of the Davidson Method for Generalized Eigenproblems

نویسندگان

  • Eloy Romero
  • José E. Román
چکیده

We present a parallel implementation of the Davidson method for the numerical solution of large-scale, sparse, generalized eigenvalue problems. The implementation is done in the context of SLEPc, the Scalable Library for Eigenvalue Problem Computations. In this work, we focus on the Hermitian version of the method, with several optimizations. We compare the developed solver with other available implementations, as well as with Krylov-type eigensolvers already available in SLEPc, particularly in terms of parallel efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel, Block, Jacobi-Davidson Implementation for Solving Large Eigenproblems on Coarse Grain Environment

Iterative methods often provide the only means of solving large eigenvalue problems. Their block variants converge slowly but they are robust especially in the presence of multiplicities. Precon-ditioning is often used to improve convergence. Yet, for large matrices, the demands posed on the available computing resources are huge. Clusters of workstations and SMPs are becoming the main computat...

متن کامل

Controlling Inner Iterations in the Jacobi-Davidson Method

The Jacobi–Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate) solution of inner linear systems to progress, in an outer iteration, towards a particular solution of the eigenproblem. In this paper we prove a relation between the residual norm of the inner linear system and the residual norm of the eigenvalue problem. We show that the latter may be estima...

متن کامل

Parallel solution of large sparse eigenproblems using a Block-Jacobi-Davidson method Parallele Lösung großer dünnbesetzter Eigenwertprobleme mit einem Block-Jacobi-Davidson Verfahren Masterarbeit

This thesis deals with the computation of a small set of exterior eigenvalues of a given large sparse matrix on present (and future) supercomputers using a Block-JacobiDavidson method. The main idea of the method is to operate on blocks of vectors and to combine several sparse matrix-vector multiplications with different vectors in a single computation. Block vector calculations and in particul...

متن کامل

A New Justification of the Jacobi–davidson Method for Large Eigenproblems

The Jacobi–Davidson method is known to converge at least quadratically if the correction equation is solved exactly, and it is common experience that the fast convergence is maintained if the correction equation is solved only approximately. In this note we derive the Jacobi–Davidson method in a way that explains this robust behavior.

متن کامل

A Parallel and Scalable Iterative Solver for Sequences of Dense Eigenproblems Arising in FLAPW

In one of the most important methods in Density Functional Theory – the FullPotential Linearized Augmented Plane Wave (FLAPW) method – dense generalized eigenproblems are organized in long sequences. Moreover each eigenproblem is strongly correlated to the next one in the sequence. We propose a novel approach which exploits such correlation through the use of an eigensolver based on subspace it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009